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Within the framework of the thermal wave model, an investigation is made of the longitudinal dynamics of
high-energy charged-particle beams. The model includes the nonlinear self-consistent interaction between the
beam and its surroundings in terms of a coupling impedance, and when resistive as well as reactive parts are
included, the evolution equation becomes a generalized nonlinear Schrödinger equation including a nonlocal
nonlinear term. The consequences of the resistive part on the propagation of particle bunches are examined
using analytical as well as numerical methods.
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I. INTRODUCTION

The thermal wave model(TWM) [1–3] describes the dy-
namics of high-energy charged-particle beams in accelera-
tors. In the TWM approach, the beam is characterized by a
complex-valued wave function, which satisfies a
Schrödinger-like evolution equation, where the intensity of
the wave function corresponds to the beam particle density.
The Schrödinger potential, which describes the interaction
between the beam and its surroundings, can be expressed in
terms of a coupling impedance, and due to collective effects,
it is a nonlinear function of the beam density. For purely
reactive impedances, the TWM equation reduces to the well-
known nonlinear Schrödinger equation. However, by includ-
ing the resistive part, the evolution equation becomes a gen-
eralized Schrödinger equation containing a new term, which
is both nonlinear and nonlocal. The modulational instability
properties of this new equation have been analyzed previ-
ously[4] and have been shown to agree with results obtained
using classical approaches, including kinetic effects such as
Landau damping[5].

In the present work we consider the dynamics of particle
bunches under the influence of the coupling impedance.
Since the purely reactive case is well known, main emphasis
is on the situation where the resistive part is included. The
dynamical evolution then proceeds as a competition between
linear dispersion, nonlinear self-focusing/defocusing, and
nonlocal self-steepening. It is found that the bunch is
accelerated/decelerated, and the self-steepening effect makes
the pulse shape asymmetric with an extended tail, and even-
tually a wave-breaking-like phenomenon can appear on the
steepening edge.

The paper is organized as follows. In Sec. II, the basic
model equation is described, and some limiting cases are

discussed. In Sec. III, which is based on a variational ap-
proach, the evolution of a perturbed soliton solution in the
presence of a small resistive coupling impedance is pre-
sented. In Sec. IV, the nonlocal effects are described using a
direct perturbation analysis. These results illustrate the inter-
play between the different effects and are qualitatively in
agreement with results obtained by other means, as summa-
rized, e.g., in Ref.[6]. The wave-breaking phenomenon is
predicted in Sec. V, and a corresponding characteristic
length-scale is found. Stationary solutions are considered in
Sec. VI, showing the existence of semi-infinite shock solu-
tions and the nonexistence of pulselike solutions with a finite
particle number. All analytical predictions are confirmed by
numerical simulations of the full model equation. Finally, in
Sec. VII the conclusions are summarized.

II. THE GENERALIZED NONLINEAR SCHRÖDINGER
EQUATION

Within the TWM, the longitudinal dynamics of particle
bunches are analyzed in terms of a complex beam wave
function Csj ,zd, wherez is the distance of propagation and
j is the longitudinal extension of the particle beam, measured
in the moving frame of reference. The particle densitylsj ,zd
is related to the wave function according tolsj ,zd
= uCsj ,zdu2 [1]. The collective longitudinal evolution of the
beam in a circular high-energy accelerating machine is de-
scribed by the Schrödinger-like equation
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whereex is the longitudinal beam emittance andh is the slip
factor [7] defined ash=gT

−2−g−2 (gT being the transition
energy, defined as the inverse of the momentum compaction
[7] andg being the relativistic factor); Usj ,zd is the effective*Email address: pontus.johannisson@elmagn.chalmers.se
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dimensionless(with respect to the nominal particle energy,
E0=mgc2) potential energy given by the interaction between
the bunch and the surroundings. Note thath can be positive
(above transition energy) or negative(below transition en-
ergy). Above transition energy, in analogy with quantum me-
chanics, 1/h plays the role of an effective mass associated
with the beam as a whole. Below transition energy, 1/h
plays the role of a “negative mass”; in analogy with optics,
this physical circumstance corresponds to anomalous disper-
sion.

Equation(1) has to be coupled with an equation forU. If
no external sources of electromagnetic(EM) fields are con-
sidered and the effects of charged-particle radiation damping
is negligible, the(self-)interaction of the beam with the sur-
roundings is determined by the image charges and the image
currents appearing on the walls of the vacuum chamber. We
consider a torus-shaped accelerating machine, characterized
by a toroidal radiusR0 and a poloidal radiusb. The self-
interaction is suitably described in terms of the “longitudinal
coupling impedance”[7] whose real and imaginary parts ac-
count for the resistive and the total reactive(capacitive and
inductive) effects, respectively. By calculating the EM fields
and the induced wall currents due to deviations from the
nominal distribution, the following equation for the self-
force acting back on the system can be established[see Eq.
(10) in Ref. [8]]

s1 − Lde9 + Re8 − s1e = s2fRl1 + sg0 − Ldl18g, s2d

where the derivatives are taken with respect to the normal-
ized longitudinal coordinate, ande andl1 are the normalized
self-field and density perturbation, respectively;R andL are
the dimensionless resistance and inductance, respectively;
andg0l18 accounts for the capacitive space-charge effect,g0
being a geometry factor(for all the details, see Ref.[8]).
Here, the dimensionless parameterss1 ands2 are defined as
s1=s4pgR0/bd2 and s2=s2hNR0/e0E0dsq/bbd2, respec-
tively, whereN is the beam particle number,q the particle
charge,e0 the vacuum dielectric constant, andb is the par-
ticle speed in the unitc (speed of light). Once Eq.(2) is
solved fore, the potential is obtained by space integration.
This means that the effective potential energyU to be in-
serted in Eq.(1) is a functional of the density perturbation
l1. In order to find the explicit form of this functional we
observe thats1@1. Furthermore, we confine our analysis to
phenomena that do not fall into the category of strongly non-
linear problems, i.e., the wave amplitude cannot be extrapo-
lated to arbitrarily high values; additionally, the gradients of
the physical quantities(density, electric field, etc.) are not
very large. Consequently, under the above physical assump-
tions, the first two terms in the left-hand side of Eq.(2) can
be neglected. Thus, the integration with respect toj of the
resulting longitudinal electric field allows us to obtain the
functional form forU as

Ufl1sj,zdg=
q2bc

E0
SR0ZI8l1sj,zd + ZR8E

0

j

l1sj8,zddj8D ,

s3d

whereZR8 andZI8 are the resistive and the total reactive parts,
respectively, of the longitudinal coupling impedance per unit

length of the machine. Thus, the coupling impedance per unit
length can be defined as the complex quantityZ=ZR+ iZI. In
our simple model of a circular machine, it is easy to see that

ZI8 =
1

2pR0
S g0Z0

2bg2 − v0LD ;
ZI

2pR0
, s4d

whereZ0 is the vacuum impedance,v0=bc/R0 is the nomi-
nal orbital angular frequency of the particles, andL is the
total inductance. This way,ZI represents the total reactance
as the difference between the total space charge capacitive
reactanceg0Z0/ s2bg2d and the total inductive reactancev0L.
Consequently, in the limit of negligible resistance, Eq.(3)
reduces to

Ufl1g =
q2bc

2pE0
S g0Z0

2bg2 − v0LDl1. s5d

Provided that the first two terms in the left-hand side of Eq.
(2) are negligible, Eq.(5) coincides with the usual expression
of the effective potential energy used in the case of a purely
reactive impedance[7]. Actually, Eq. (3) then fully agrees
with the effective potential energy given in the literature,
although the derivation is given there in terms of electric
circuit models or within the theory of wake fields[9,10].

Under certain physical conditions, the two “extra terms”
in Eq. (2) play an important role. In the classical kinetic
theory of a coasting beam, the system, described by Eq.(2)
and the Vlasov equation, predicts some nonlinear effects that
are not present in the simplified description[8]. In fact, the
existence of some nonlinear coherent localized structures,
such as solitons, holes, etc., that have been numerically as
well as experimentally observed[11–13] requires the nonlin-
earity due to the large amplitude regime to be balanced by
sufficiently strong dispersion. This effect is not present in the
standard kinetic description of coasting beam dynamics with-
out the extra terms. Recent theoretical investigations carried
out within the classical Vlasov theory, based on the full Eq.
(2), have predicted such coherent localized structures
[8,14,15] in good agreement with both numerical and experi-
mental observations.

However, as mentioned, our present analysis is carried out
in the regime where the two extra terms can be neglected
and, additionally, the model we are using is not the Vlasov
one. In the framework of the TWM, we have to express Eq.
(3) in terms of the beam wave function and then substitute in
Eq. (1). Let us denote the initial beam density bylsj ,0d.
Since we are assuming that the unperturbed beam is coast-
ing, we can putlsj ,0d=l0, wherel0 is a positive constant
(initially, the beam is uniformly distributed alongj with den-
sity l0). According to the TWM assumptions described in
Sec. I, we havel0= uCsj ,0du2;uC0u2, whereC0 is a com-
plex function, whose squared modulus is the initial unper-
turbed density of the coasting beam. On the basis of the
above TWM interpretations, we can write the density pertur-
bation asl1sj ,zd= uCsj ,zdu2− uC0u2. Thus, the combination
of Eq. (1) and Eq.(3) gives the following evolution equation
for the beam:
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i
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] z
= a
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] j2 + ksuCu2 − uC0u2dC

+ mCE
0

j

fuCsj8,zdu2 − uC0u2gdj8, s6d

where

a = h/2 = sgT
−2 − g−2d/2, s7d

k = q2bcR0/sexE0dZI8, s8d

m = q2bc/sexE0dZR8 . s9d

Equation(6) has recently been used to study the Landau-type
damping of large amplitude EM wave packets in a nonlinear
medium as well as relatively intense high-energy charged-
particle coasting beams in accelerating machines[5,16].

The fundamental evolution equation of the TWM, Eq.(6),
can be written in several different, but equivalent, ways. For
the purpose of the present investigation, it is convenient to
use a somewhat simpler form by making the transformation

Csj,zd = csx,zdexpfiQsx,zdg, s10d

where

Qsx,zd = muC0u2xz− 2
3am2uC0u4z3 + kuC0u2z, s11d

and the new coordinates are defined by

x = j + amuC0u2z2, s12d

z= z. s13d

Furthermore, the lower limit of integration in Eq.(6) can be
extended to minus infinity, the difference being only a
z-dependent phase variation of the beam wave function. The
resulting form of the thermal wave model equation, to be
used in the present work, then reads

i
] c

] z
= a

]2c

] x2 + kucu2c + mcE
−`

x

ucsx8,zdu2dx8. s14d

In the casem=0, Eq. (14) reduces to the fundamental non-
linear Schrödinger equation for which a wealth of informa-
tion is available. In particular, depending on the sign of the
productak, the nonlinearity will either counteractsak.0d
or enhancesak,0d the dispersive broadening. Furthermore,
the velocity of the particle bunch is left unchanged, and no
asymmetry is introduced on an initially symmetric bunch. Of
special interest is the caseak.0, when shape-preserving
soliton solutions are possible as a balance between linear
dispersion and nonlinear self-focusing effects.

The properties of the full Eq.(14) are not known and in
order to see the physical significance of the new term, it is
instructive to qualitatively discuss the nonlinear potential
Ufcg, which in the casea,0 is given by

Ufcg = kucu2 + mE
−`

x

ucu2dx8. s15d

Consider first the casem→0 and ak.0, i.e., assume that
also k,0. Then, sech-shaped solutions form a well-shaped
potential that allows bound states, solitons, to exist. The fun-
damental soliton solution corresponding to Eq.(14) is

c = A0 sechsaxde−idz, a =ÎkA0
2

2a
, d =

kA0
2

2
. s16d

The nonlocal part of the potential introduced bymÞ0 con-
tributes a monotonous term to the potential and creates an
asymmetry. A qualitative plot of the total potential corre-
sponding to a field shaped as the fundamental soliton(choos-
ing A0=1, a=1, andk=−1), is shown in Fig. 1, using differ-
ent values form. It is clear that ifm is small, the evolution of
an initially soliton-shaped pulse should involve an accelera-
tion in a direction determined by the sign ofm, but the
change of the pulse shape can be expected to be slow due to
the similarities with the conditions for soliton propagation.
For largem, however, there can be no pulse-shaped station-
ary solutions, since the total potential then is monotonous,
and thus is unable to provide the confining effects needed for
soliton generation. By noticing that the slope of the potential
varies over the pulse, and that the intense parts are
accelerated/decelerated more than the low intensity parts,
strong internal pulse dynamics is anticipated. Our subsequent
analysis will confirm this intuitive picture.

III. PERTURBED SOLITON DYNAMICS

From the potential picture it is expected that one of the
main effects of the nonlocal term is to induce an acceleration
of an initially stationary pulse. A more quantitative analysis
of this effect can be carried out by investigating the adiabatic
evolution of the soliton solution, Eq.(16), in the presence of

FIG. 1. A qualitative plot of the potential, Eq.(15), for a pulse-
shaped field using different values ofm.
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a small but finite value ofm. This can conveniently be done
using a direct variational approach, see, e.g., Ref.[17]. A
suitable trial function is

cTsx,zd = A sechfasx − MdgeifCsx−Md+Dg, s17d

whereAszd, aszd, Cszd, Dszd, andMszd are unknown param-
eter functions to be determined by the variational procedure.
We emphasize that this ansatz function neglects any asym-
metric pulse deformations and consequently can model only
part of the dynamical evolution. Using Ritz optimization,
these parameter functions can be determined and the follow-
ing approximate solution is obtained:

cT = A0 sechSÎkA0
2

2a
sDexpHiF−

2mA0
2

3
zs−

4am2A0
4

27
z3

− SmA0
2Î 2a

kA0
2 +

kA0
2

2
DzGJ , s18d

where

s= x −
2amA0

2

3
z2. s19d

This solution is consistent with the classical nonlinear
Schrödinger(NLS) equation in the sense that the fundamen-
tal soliton, Eq.(16), is recovered in the limit whenm→0.
The solution in the general case describes a soliton being
accelerated in the original frame of reference. The accelera-
tion g is given byg=4amA0

2/3 and the concomitant shift of
the group velocity is associated with a frequency shift pro-
portional toz.

In order to check the approximate analytical solutions, but
also to obtain results in parameter ranges where analytical
solutions are not available, Eq.(14) has been solved numeri-
cally. For this purpose, the standard split-step Fourier method
for handling the NLSE is modified to include the effects of
the nonlocal term. An example of the dynamics caused by a
weak nonlocal term is seen in Fig. 2. The initial pulse, which
is centered aroundx=0, is the fundamental soliton, making a

comparison with the variational result simple. The param-
eters area=−1, k=−1, m=0.1, andA0=1, and the propaga-
tion distance isL=30. The pulse is accelerated towards nega-
tive x coordinates, but the shape is only weakly distorted.
Thus, for small values ofm, the variational result, which
predicts the final center position to bex=−60, describes the
propagation in an excellent way.

However, for larger values ofm, the asymmetric deforma-
tion of the pulse becomes more important and tends to leave
an extended tail behind the main pulse. A numerical simula-
tion result of this situation is shown in Fig. 3, wherem=1.
The propagation distance isL=10, making the finalx posi-
tion similar to the example above. It is seen that the internal
dynamics of the pulse is significantly stronger; the peak
power decreases, and a wake field is developed. Again using
the variational result, the final position is expected to bex
=−66.7, but the decaying peak power makes the potential
less steep during propagation, which causes the acceleration
to decrease.

Clearly, situations wherem is large cannot be analyzed by
a variational approach based on the soliton ansatz. In order to
study the deformation dynamics in some more analytical de-
tail, we will instead use a perturbation analysis.

IV. PERTURBATION ANALYSIS

Although a general solution of Eq.(14) based on analyti-
cal methods is not possible, the initial dynamics can be de-
scribed using a perturbation analysis. For this purpose, Eq.
(14) is rewritten as a coupled system in the real amplitudeA
and the phaseu of c according to

] A2

] z
= 2a

]

] x
SA2] u

] x
D , s20d

] u

] z
= − aF 1

A

]2A

] x2 − S ] u

] x
D2G − kA2 − mE

−`

x

A2dx8. s21d

For an initially unchirped pulse, i.e.,usx,0d=0, the initial
amplitude modulation first creates a phase modulation pro-

FIG. 2. The numerically obtained dynamics of an initially
soliton-shaped pulse using a weak nonlocal term.

FIG. 3. By increasing the strength of the nonlocal term, strong
pulse shape distortion is introduced.
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portional to z, which then generates a subsequent change,
proportional toz2, of the amplitude modulation. Let us con-
sider the case of the fundamental soliton, Eq.(16), as initial
field, since the dispersion and the Kerr nonlinearity then bal-
ance each other. Thus, as initial condition we consider
Asx,z=0d=A0 sechsaxd, wherea is related toA0 according to
Eq. (16), andusx,z=0d=0. Using these in the right-hand side
of Eq. (21), the initial evolution ofu is obtained, and this
solution can then be used to find the lowest order modifica-
tions of A from Eq. (20).

However, as found using variational analysis, the pulse
evolution is, due to the effects of the nonlocal term, most
conveniently described in an accelerated coordinate system.
The proper value of the acceleration can be taken from the
preceding section, but it is also instructive to derive it using
an analogy with Ehrenfest’s theorem in quantum mechanics.
It is straightforward to show that the motion of the mean
position kxl of the bunch obeys the equation of motion

g0 ;
d2kxl
dz2 = − 2akFl, s22d

where the averaging is defined according to

kfl ;
E

−`

`

f ucu2dx

E
−`

`

ucu2dx

, s23d

and the force isF=−]U /]x. The acceleration obtained in this
way is identical to that derived using the variational ap-
proach. Thus,g0=g and the new coordinates is defined ac-
cording to Eq.(19). The amplitude and phase are then ob-
tained as

A = A0 sechsasdÎ1 + 4aamA0
2tanhsasdfsech2sasd − 1

3gz2,

s24d

u = −HkA0
2

2
+

mA0
2

a
ftanhsasd + 1gJz. s25d

The first part of the phase, Eq.(25), does not depend ons,
and is identical to the phase of the fundamental soliton. The
second part is tanh shaped, which is due to the form of the
nonlocal potential term. As expected from the potential pic-
ture, it is found that the amplitude becomes asymmetric.

Due to the limited accuracy, the perturbation analysis can
only be applied within a certain propagation distance, ob-
tained from Eq.(24) as

4aamA0
2z2 ! 1 ⇒ z! 1/Îu4aamA0

2u. s26d

Using the same numerical parameters as above, no signifi-
cant changes in the amplitude are seen within that range.
However, as seen in Eq.(26), the application range decreases
slowly asm increases. Thus, a large value,m=10, has been
used in Fig. 4, where the perturbation analysis is compared
with the numerically obtained result after a propagation dis-
tanceL=0.2. It is seen that the pulse is starting to “lean to

the side,” and that the perturbation profile is in good agree-
ment with the numerical result, although its peak value is
slightly too large.

V. WAVE BREAKING

The nonlocal potential term, proportional tom in Eq. (15),
gives rise to a force,Fsxd=−mucu2. This implies that the cen-
tral parts of the bunch are affected by a stronger force than
the wings, and will accelerate/decelerate more. In fact, this is
the basic mechanism behind the steepening and the deforma-
tion of the bunch. It is clear that after a certain distance of
propagation, the high-amplitude parts should overtake/be
overtaken by the low-amplitude parts of the bunch. However,
the finite dispersion will prohibit the development of an in-
finite amplitude gradient, and the “overtaking” between dif-
ferent parts of the bunch instead leads to the appearance of
oscillations on the amplitude at the base of the steepening
side of the bunch.

It is appropriate at this point to emphasize that this wave-
breaking phenomenon does not involve a true shock forma-
tion with infinite gradients as is the case of wave breaking of
plasma waves. Instead, this feature is analogous to the wave
breaking in nonlinear defocusing Kerr media,[18,19], with
the difference that in the latter case, the corresponding force
is an odd function, which implies that the wave remains sta-
tionary and that the wave-breaking phenomenon occurs sym-
metrically on both sides of the pulse.

In order to estimate the characteristic length scale of the
wave-breaking phenomenon, the perturbation result for the
amplitude, Eq.(24), can be used. Thus, the order of magni-
tude of the wave-breaking distance,zwb, is estimated as the
shortest propagation distance for which the amplitude has a
zero. This is easily shown to occur at

zwb =Î 3

4uauamA0
2 . s27d

It is interesting to note that this approach gives the same
result as the one used in Ref.[19], which was based on the

FIG. 4. Comparison of the asymmetric shapes predicted by
analysis and numerical simulations, respectively.
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local velocity shear in the pulse created by the nonlinearly
induced chirp, provided the latter is generalized to include
the mean acceleration of the pulse.

By increasing the propagation distance in Fig. 4, oscilla-
tions on the amplitude will start to occur at the base of the
pulse on the steepening side, i.e., close tox=−3. Numeri-
cally we define the wave-breaking distance as the propaga-
tion distance where the amplitude acquires a second maxi-
mum. In Fig. 5, the analytical prediction for the wave-
breaking distance is compared with the result of the
numerical computations. The results show very good agree-
ment, although the numerical results tend to be somewhat
larger than predicted. However, since only an order-of-
magnitude estimate has been made, the result is quite satis-
factory. In particular, the analytic result predicts very well
how the wave-breaking distance scales withm.

VI. STATIONARY SOLUTIONS

As already discussed, the purely reactive case, corre-
sponding tom=0, allows a soliton solution, Eq.(16), con-
taining a finite number of particles. In order to investigate
whether similar stationary solutions exist also in the general
case, we return to Eqs.(20) and (21), which describe the
evolution of the(real) amplitude and the phase of the wave,
respectively. Based on our previous results, we will look for
solutions that are stationary in an accelerated frame of refer-
ence, i.e., we introduces=x−gz2/2, where the accelerationg
now is unknown and has the character of an eigenvalue.
Stationarity implies that the amplitude depends only on the
coordinates, i.e., A=Assd. The phase variation can then be
found explicitly, and the system becomes

u = u0 + C1z−
gzs

2a
−

g2z3

12a
, s28d

a
d2A

ds2 + C1A −
gsA

2a
+ kA3 + mAE

−`

s

A2ds8 = 0, s29d

whereC1 is a constant, which acts as a second eigenvalue.
However, by rescalinga, g, k, andm, the equation can be
rewritten as

a
d2A

ds2 + A −
gsA

2a
+ kA3 + mAE

−`

s

A2ds8 = 0. s30d

This normalization setsC1=1, and the physical significance
of this can be found by lettingm→0 (implying also thatg
→0). The fundamental soliton is then recovered from Eq.
(29), and the phase is given byC1z. Thus, settingC1=1
corresponds to normalizing with respect to the propagation
constant.

Assume that a pulse-shaped stationary solution exists.
This implies thatA→0 as s→−`, and asymptotically the
field should satisfy the equation

a
d2A

ds2 + A −
gsA

2a
= 0, s31d

which can be solved in terms of the Airy functions, Aisxd and
Bisxd, as

A = D1 AiSgs− 2a

Î32a2g2D + D2 BiSgs− 2a

Î32a2g2D . s32d

In order to obtain a solution containing a finite number of
particles, it is necessary thatg,0 and thatD2=0. For pulse-
like solutions, the amplitude of the solution must also vanish
ass→` and the corresponding asymptotic equation is

a
d2A

ds2 + s1 + mWdA −
gsA

2a
= 0. s33d

Here, W is the total number of particles, which has been
assumed to be finite, and the corresponding solution is

A = D3 AiSgs− 2s1 + mWda
Î32a2g2 D

s34d

+ D4 BiSgs− 2s1 + mWda
Î32a2g2 D .

Since the acceleration has already been chosen to be nega-
tive, this implies that the asymptotic solution will be the sum
of two oscillating Airy functions ass→`. However, the total
number of particles of such a solution is infinite, and a con-
tradiction has been reached. Thus, we conclude that there are
no stationary solutions to Eq.(14) containing a finite number
of particles.

On the other hand, if the conditionA→0 as s→` is
relaxed, steplike solutions can be found. By assuming in Eq.
(30) thatA→A` whens→`, the integral term is asymptoti-
cally equal tomA`

3s. This term can cancel the term that gives
rise to the Airy solutions, provided that

A` =Î g

2am
. s35d

A solution of this type has been calculated numerically by
using a=−1, k=−1, g=−1, andm=1, and by choosing the
amplitude for the asymptotic solution for negatives. The
result has been plotted in Fig. 6, and it is seen that the pre-

FIG. 5. The wave-breaking distance as predicted by analysis and
numerical simulations, respectively.
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dicted value for the asymptotic amplitude,A`=1/Î2, is cor-
rect.

VII. CONCLUSIONS AND REMARKS

In conclusion, a generalized NLSE, describing the nonlin-
ear longitudinal dynamics of high-energy charged particle
beams in accelerators within the TWM approach, has been
analyzed using both analytical and numerical methods. It has
been discussed in qualitative physical terms how the inclu-
sion of the resistive part of the coupling impedance gives rise

to both an acceleration and a deformation of the particle
bunch. These effects have been analyzed analytically using
both a variational analysis and a direct perturbation analysis
of the initial dynamics, and the results have been shown to
be in good agreement with numerical simulations. It has also
been shown that for impedances with a large resistive part,
the deformation leads to self-steepening and eventually a
wave-breaking phenomenon. The scale length for this effect
has been estimated and has also been shown to be in good
agreement with numerical results. Finally, it has been shown
that no stationary pulselike solutions with a finite number of
particles exist for the generalized NLS equation, but semi-
infinite shock solutions are possible.

The results cannot be extrapolated to arbitrarily high am-
plitudes, since very steep gradients are predicted in that case
and a more general equation, e.g., the full Eq.(2), must be
used. It should, however, be noted that the asymmetric self-
steepening does not lead to true shock formation in the sense
of infinite derivatives. Instead, the steepening effect is bal-
anced by the dispersive effects included in the model. We
also emphasize that the wave-breaking phenomenon is not
the analog of the wave breaking of plasma waves, where
very steep gradients appear unless dispersion is included.
Instead “wave breaking” refers to an optical phenomenon
where the pulse steepens and starts to oscillate at its low
intensity wings without any singular behavior. The maximum
attainable slope is determined by the strength of the nonlin-
earity and consequently there is a maximum amplitude of the
pulse at which the model breaks down. In a future work, the
charged-particle beam dynamics will be investigated by tak-
ing into account the full Eq.(2).

[1] R. Fedele and G. Miele, Nuovo Cimento D13, 1527(1991).
[2] R. Fedele, G. Miele, L. Palumbo, and V. G. Vaccaro, Phys.

Lett. A 179, 407 (1993).
[3] R. Fedele, F. Galluccio, and G. Miele, Phys. Lett. A185, 93

(1994).
[4] D. Anderson, R. Fedele, V. Vaccaro, M. Lisak, A. Berntson,

and S. Johanson, Phys. Lett. A258, 244 (1999).
[5] R. Fedele and D. Anderson, J. Opt. B: Quantum Semiclassical

Opt. 2, 207 (2000).
[6] R. D. Ruth, inAn Overview of Collective Effects in Circular

and Linear Accelerators, Proceeding of a Topical Course of
the Joint US-CERN School on Particle Accelerators, edited by
M. Month and S. Turner(Springer-Verlag, Berlin, 1989).

[7] J. D. Lawson,The Physics of Charged-Particle Beams(Clar-
endon Press, Oxford, 1988).

[8] H. Schamel and R. Fedele, Phys. Plasmas7, 3421(2000).
[9] L. Palumbo, V. G. Vaccaro, and M. Zobov, inWake Fields and

Impedance, Proceedings of CERN Accelerator School, Rho-
dos, Greece, 1993, edited by S. Turner(CERN, Geneva, 1995),
Vol. I, p. 331.

[10] A. W. Chao,Physics of Collective Beam Instability in High
Energy Accelerators(Wiley, New York, 1993).

[11] S. Koscielniak, S. Hancock, and M. Lindroos, Phys. Rev. ST

Accel. Beams4, 044201(2001).
[12] P. L. Colestock and L. K. Spentzouris,The Future of Accelera-

tor Physics, edited by T. Tajima, AIP Conf. Proc. No. 356
(AIP, Woodbury, NY, 1996); P. L. Colestocket al. e-print,
physics/9808035.

[13] L. K. Spentzouris, J.-F. Ostiguy, and P. L. Colestock, Phys.
Rev. Lett. 76, 620 (1996).

[14] H. Schamel, Phys. Rev. Lett.79, 2811(1997).
[15] J.-M. Grießmeier, H. Schamel, and R. Fedele, Phys. Rev. ST

Accel. Beams5, 024201(2002).
[16] R. Fedele, S. De Nicola, V. G. Vaccaro, D. Anderson, and M.

Lisak, in Landau Damping in Nonlinear Schrödinger Equa-
tions, Proceedings of the 18th Advanced ICFA Beam Dynam-
ics Workshop on Quantum Aspect of Beam Physics, Capri,
2000, edited by P. Chen(World Scientific, Singapore, 2002), p.
483.

[17] D. Anderson, M. Lisak, and A. Berntson, Pramana57, 917
(2001).

[18] W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt. Soc.
Am. B 1, 139 (1984).

[19] D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-
Teixeiro, J. Opt. Soc. Am. B9, 1358(1992).

FIG. 6. A numerically obtained steplike solution.

NONLOCAL EFFECTS IN HIGH-ENERGY CHARGED… PHYSICAL REVIEW E 69, 066501(2004)

066501-7


