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Within the framework of the thermal wave model, an investigation is made of the longitudinal dynamics of
high-energy charged-particle beams. The model includes the nonlinear self-consistent interaction between the
beam and its surroundings in terms of a coupling impedance, and when resistive as well as reactive parts are
included, the evolution equation becomes a generalized nonlinear Schrodinger equation including a nonlocal
nonlinear term. The consequences of the resistive part on the propagation of particle bunches are examined
using analytical as well as numerical methods.
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I. INTRODUCTION discussed. In Sec. lll, which is based on a variational ap-

The thermal wave modelTWM) [1-3] describes the dy- proach, the evolution of a perturbed_solitpn solution _in the
namics of high-energy charged-particle beams in accelerfresence of a small resistive coupling impedance is pre-
tors. In the TWM approach, the beam iS Characterized by éented. In Sec. IV, the n0n|Oca| eﬁects are desc”bed US|ng a
complex-valued wave function, which satisfies adirect perturbation analysis. These results illustrate the inter-
Schrédinger-like evolution equation, where the intensity ofplay between the different effects and are qualitatively in
the wave function corresponds to the beam particle densitygreement with results obtained by other means, as summa-
The Schrodinger potential, which describes the interactionized, e.g., in Ref[6]. The wave-breaking phenomenon is
between the beam and its surroundings, can be expressedpredicted in Sec. V, and a corresponding characteristic
terms of a coupling impedance, and due to collective effectdength-scale is found. Stationary solutions are considered in
it is a nonlinear function of the beam density. For purelySec. VI, showing the existence of semi-infinite shock solu-
reactive impedances, the TWM equation reduces to the welkions and the nonexistence of pulselike solutions with a finite
known nonlinear Schrodinger equation. However, by includ-particle number. All analytical predictions are confirmed by
ing the resistive part, the evolution equation becomes a gemumerical simulations of the full model equation. Finally, in
eralized Schrddinger equation containing a new term, whicl8ec. VII the conclusions are summarized.
is both nonlinear and nonlocal. The modulational instability
properties of this new equation have been analyzed previ- )
ously[4] and have been shown to agree with results obtained !l. THE GENERALIZED NONLINEAR SCHRODINGER
using classical approaches, including kinetic effects such as EQUATION

Landau dampings]. . . . Within the TWM, the longitudinal dynamics of particle
In the present WO”.( we consider the dy”a!’“'cs. of partlClaounches are analyzed in terms of a complex beam wave

e e e o € K oo V£, here i te disance ofpropagaion and
purely ' b ﬁgis the longitudinal extension of the particle beam, measured

is on the situation where the resistive part is mgluded. Th n the moving frame of reference. The particle denaitg, ¢)
dynamical evolution then proceeds as a competition between

linear dispersion, nonlinear self-focusing/defocusing, and_s relateg to the wave functlo_n gccordlng _m(g,g)
nonlocal self-steepening. It is found that the bunch i:s_w(f’,g)| [1,]' The cpllectlve Iong|tud|nallevolut|on. of fche
accelerated/decelerated, and the self-steepening effect makaM in a circular high-energy accelerating machine is de-
the pulse shape asymmetric with an extended tail, and everfciP€d by the Schrodinger-like equation
tually a _vvave-breaking-like phenomenon can appear on the 0V EnPv
steepening edge. e =5 tUEDY, (1
The paper is organized as follows. In Sec. Il, the basic d¢ 2 9§
model equation is described, and some limiting cases argheree, is the longitudinal beam emittance ands the slip
factor [7] defined asn= y}z— ¥ 2 (yr being the transition
energy, defined as the inverse of the momentum compaction
*Email address: pontus.johannisson@elmagn.chalmers.se [7] andy being the relativistic factor U(&, ) is the effective
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dimensionlesgwith respect to the nominal particle energy, length of the machine. Thus, the coupling impedance per unit
Eo=myc?) potential energy given by the interaction betweenlength can be defined as the complex quarfiyZg+iZ;. In

the bunch and the surroundings. Note thatan be positive  our simple model of a circular machine, it is easy to see that
(above transition energyor negative(below transition en-

ergy). Above transition energy, in analogy with quantum me- 1 ( goZo Z
chanics, 14 plays the role of an effective mass associated Z = —<— - wo,/:) =_—, (4)
with the beam as a whole. Below transition energyz;1/ 2mRo\ 287 2mRy

plays the role of a “negative mass”; in analogy with optics, _ _ ) _

this physical circumstance corresponds to anomalous dispefthereZ, is the vacuum impedancey,=pc/ Ry is the nomi-

sion. nal orbital angular frequency of the particles, afids the
Equation(1) has to be coupled with an equation fdr If ~ total inductance. This way, represents the total reactance

no external sources of electromagnetiM) fields are con- as the difference between the total space charge capacitive

sidered and the effects of charged-particle radiation dampingeactance,Z,/(23y?) and the total inductive reactaneg’.

is negligible, the(self-jinteraction of the beam with the sur- Consequently, in the limit of negligible resistance, E8)

roundings is determined by the image charges and the imageduces to

currents appearing on the walls of the vacuum chamber. We

consider a torus-shaped accelerating machine, characterized qzﬁc(

by a toroidal radiusR, and a poloidal radiu®. The self- UN]=—"— Joo —w0£>)\1. (5)
interaction is suitably described in terms of the “longitudinal 2mE,\ 2
coupling impedance[7] whose real and imaginary parts ac- , ) i i

count for the resistive and the total reactiwapacitive and Provided th_at. the first two terms in _the left-hand side of. Eq.
inductive effects, respectively. By calculating the EM fields (2) aré negligible, EqeS) coincides with the usual expression
and the induced wall currents due to deviations from the?f the effective potential energy used in the case of a purely
nominal distribution, the following equation for the self- réactive impedancgr]. Actually, Eq.(3) then fully agrees

force acting back on the system can be establigsed Eq. with the effective potential energy given in the literature,

(10) in Ref. [8]] although the derivation is given there in terms of electric
) circuit models or within the theory of wake field8,10].
(1-L)€"+Re' —ore=a[RA +(go— LN, (2) Under certain physical conditions, the two “extra terms”

Ii_n Eq. (2) play an important role. In the classical kinetic

theory of a coasting beam, the system, described by Bq.

and the Vlasov equation, predicts some nonlinear effects that
re not present in the simplified descripti8j. In fact, the
Xistence of some nonlinear coherent localized structures,

being a geometry factofor all the details, see Ref8]). such as SO|it9nS. holes, etc., that have b_een numeric.ally as
Here, the dimensionless parametefsand o, are defined as weI_I as experimentally obseryQﬂil—lE] requires the nonlin-
o1=(4myRy/b)2 and o,=(27NRy/ egEo)(q/ BD)2, respec- earity due to the Ia_rge amphtudg regime to be balanqed by
tively, whereN is the beam particle numbeg, the particle sufﬁmently_stro_ng dlsper§|on. This effect IS not present in t.he
charée €, the vacuum dielectric constant a;z,idis the par- standard kinetic description of coasting l_)eam _dyn_amlcs W't.h'
ticle sp,eed in the unit (speed of light (5nce Eq.(2) is out the extra terms. Recent theoretical investigations carried

solved fore, the potential is obtained by space integration.Out within the clz_assmal Viasov theory, based_on the full Eq.
This means that the effective potential enetdyto be in- (2), havg predicted such qoherent Iocal_lzed structures
serted in Eq(1) is a functional of the density perturbation [8,14,13 in good agreement with both numerical and experi-

N\1- In order to find the explicit form of this functional we mental observations.

observe thatr;> 1. Furthermore, we confine our analysis to . However, as mentioned, our present analysis is carried out

phenomena that do not fall into the category of strongly noni" the regime where the iwo exira terms can be neglected

linear problems, i.e., the wave amplitude cannot be extrapo@nd’ additionally, the model we are using is not the Vlasov

PTG . . : one. In the framework of the TWM, we have to express Eq.
lated to arbitrarily high values; additionally, the gradients of _ "~ ' ) X
the physical quayntit?esdensity, electric fie%d, et)?.are not (3) in terms of the beam wave function and then substitute in

very large. Consequently, under the above physical assum - (). Let us deno'Fe the initial beam density M{é,p).
tions, the first two terms in the left-hand side of E8) can ince we are assuming that the unperturbed beam is coast-

be neglected. Thus, the integration with respect wf the ir_19_,_we can p“v‘(g,’ 0):?‘0’ wherg)\o_ is a positive _constant
resulting longitudinal electric field allows us to obtain the (initially, the beam is uniformly distributed alorigwith den-

where the derivatives are taken with respect to the norma
ized longitudinal coordinate, andand\, are the normalized
self-field and density perturbation, respectivéandL are
the dimensionless resistance and inductance, respectivel
andgo\; accounts for the capacitive space-charge effggct,

functional form forU as sity \g). According to the TWM assumptions described in
5 ; Sec. |, we have\g=|W(¢,0)|>= ¥/, whereW¥, is a com-
_9°Bc / ,J / / plex function, whose squared modulus is the initial unper-
UMEDF Eo <ROZ')\1(§'§)+ZR 0 M. 0de ) turbed density of the coasting beam. On the basis of the

3) above TWM interpretations, we can write the density pertur-
bation as\;(&,0)=|¥(&,0)]?-|¥% Thus, the combination
whereZ}, andZ/ are the resistive and the total reactive parts,of Eq. (1) and Eq.(3) gives the following evolution equation
respectively, of the longitudinal coupling impedance per unitfor the beam:
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oV PV 6 ' ' ' ' ' '
Py Rlry + k(| WP = [P
¢
et | e 0Pl @
where =
=
a=n2=(y’ -y 22, o
K= °BCcR (6Eo)Z] , (8)
=Bl (6E) Zg. 9

Equation(6) has recently been used to study the Landau-type

damping of large amplitude EM wave packets in a nonlinear

medium as well as relatively intense high-energy charged-

particle coasting beams in accelerating machiisesg|.
The fundamental evolution equation of the TWM, 6,

can be written in several different, but equivalent, ways. For .

the purpose of the present investigation, it is convenient to - 2 24y

use a somewhat simpler form by making the transformation UL = "+ 'LLJ_OO X’ (19

FIG. 1. A qualitative plot of the potential, E¢L5), for a pulse-
shaped field using different values af

W(£,0) = p(x,2exdif(x,2)], (10 consider first the casp—0 and ax>0, i.e., assume that
also k< 0. Then, sech-shaped solutions form a well-shaped
potential that allows bound states, solitons, to exist. The fun-
damental soliton solution corresponding to EtY) is

where
O(x,2) = u|Wo| )z~ §au?[Wo|*Z + kW2, (11)

and the new coordinates are defined by W= A, sechax)e’® a= o0, 5% (16)
x= &+ ap|Wol*s, (12
The nonlocal part of the potential introduced jay~ 0 con-
z=¢. (13)  tributes a monotonous term to the potential and creates an
asymmetry. A qualitative plot of the total potential corre-
Furthermore, the lower limit of integration in E¢6) can be  sponding to a field shaped as the fundamental sofithnos-
extended to minus infinity, the difference being only aing A;=1,a=1, andk=-1), is shown in Fig. 1, using differ-
z-dependent phase variation of the beam wave function. Thent values fop. It is clear that ifu is small, the evolution of
resulting form of the thermal wave model equation, to bean initially soliton-shaped pulse should involve an accelera-
used in the present work, then reads tion in a direction determined by the sign @f, but the
change of the pulse shape can be expected to be slow due to
N P 5 X 2 the similarities with the conditions for soliton propagation.
Py e T |ty + /Wf_w [x",2%dx". (14)  For largeu, however, there can be no pulse-shaped station-
ary solutions, since the total potential then is monotonous,
In the casex=0, Eq.(14) reduces to the fundamental non- and thus is unable to provide the confining effects needed for

linear Schrodinger equation for which a wealth of informa- soliton generation. By noticing that the slope of the potential

tion is available. In particular, depending on the sign of theVares over the pulse, and that the intense parts are

product ax, the nonlinearity will either counteraétx > 0) accelerated/decelerated more than the low intensity parts,

or enhancéax < 0) the dispersive broadening. Furthermore,Strong internal pulse dynamics is anticipated. Our subsequent

the velocity of the particle bunch is left unchanged, and noanaIyS|s will confirm this intuitive picture.

asymmetry is introduced on an initially symmetric bunch. Of

special interest is the casex>0, when shape-preserving IIl. PERTURBED SOLITON DYNAMICS
soliton solutions are possible as a balance between linear
dispersion and nonlinear self-focusing effects. From the potential picture it is expected that one of the

The properties of the full Eq.14) are not known and in  main effects of the nonlocal term is to induce an acceleration
order to see the physical significance of the new term, it i®f an initially stationary pulse. A more quantitative analysis
instructive to qualitatively discuss the nonlinear potentialof this effect can be carried out by investigating the adiabatic
U[ ], which in the casex<0 is given by evolution of the soliton solution, E@16), in the presence of
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FIG. 3. By increasing the strength of the nonlocal term, strong

FIG. 2. The numerically obtained dynamics of an initiall . NN
y y y pulse shape distortion is introduced.

soliton-shaped pulse using a weak nonlocal term.

comparison with the variational result simple. The param-
eters arew=-1, k=-1, u=0.1, andAy,=1, and the propaga-
tion distance i4. =30. The pulse is accelerated towards nega-
tive x coordinates, but the shape is only weakly distorted.
Yr(x,2) = A sectha(x — M) ]el[Cx-M+D] (17)  Thus, for small values ofx, the variational result, which

predicts the final center position to Be—60, describes the
whereA(z), a(z), C(2), D(z), andM(z) are unknown param- propagation in an excellent way.

eter functions to be determined by the variational procedure. qvever for larger values qf, the asymmetric deforma-
We emphasize that this ansatz function neglects any asymy,, of the pulse becomes more important and tends to leave
metric pulse deformations and consequently can model only, oyiended tail behind the main pulse. A numerical simula-
part of the dynamical evolution. Using Ritz optimization, yion result of this situation is shown in Fig. 3, whese= 1.
these parameter functions can be determined and the followq, propagation distance is=10, making the finak posi-

ing approximate solution is obtained: tion similar to the example above. It is seen that the internal

a small but finite value of.. This can conveniently be done
using a direct variational approach, see, e.g., RET]. A
suitable trial function is

2 2 274 dynamics of the pulse is significantly stronger; the peak
=~y sec){ A /ﬂos>exp{i[_ ZMAOzs— Aap A°z3 power decreases, and a wake field is developed. Again using
2a 3 27 the variational result, the final position is expected toxbe
20 kA2 =-66.7, but the decaying peak power makes the potential
- (,uAS —+ —)z , (18) less steep during propagation, which causes the acceleration
KRy 2 to decrease.

where Clearly, situations wherg is large cannot be analyzed by
a variational approach based on the soliton ansatz. In order to
study the deformation dynamics in some more analytical de-

(19) tail, we will instead use a perturbation analysis.

2

S=X- %22.
3

This solution is consistent with the classical nonlinear IV. PERTURBATION ANALYSIS
Schrddinge(NLS) equation in the sense that the fundamen-
tal soliton, Eq.(16), is recovered in the limit whem— 0. Although a general solution of E¢14) based on analyti-
The solution in the general case describes a soliton beingal methods is not possible, the initial dynamics can be de-
accelerated in the original frame of reference. The accelerssCribed using a perturbation analysis. For this purpose, Eq.
tion y is given by y=4auA3/3 and the concomitant shift of (14) is rewritten as a coupled system in the real amplitdde
the group velocity is associated with a frequency shift pro-and the phasé of s according to

portional toz. 9 A2 d a0
In order to check the approximate analytical solutions, but — = 2a—<A2—), (20
also to obtain results in parameter ranges where analytical Jz IX\  IX

solutions are not available, E(L4) has been solved numeri-

cally. For this purpose, the standard split-step Fourier method a0 1PA [96)\? 5 < oo

for handling the NLSE is modified to include the effects of 9z @ o) | A _'“f_xA dx'. (21)

the nonlocal term. An example of the dynamics caused by a

weak nonlocal term is seen in Fig. 2. The initial pulse, whichFor an initially unchirped pulse, i.e4(x,0)=0, the initial

is centered aroung=0, is the fundamental soliton, making a amplitude modulation first creates a phase modulation pro-

Adx?
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portional toz, which then generates a subsequent change, o ~ - initial
proportional toz?, of the amplitude modulation. Let us con- 1+ L — numerical 1
sider the case of the fundamental soliton, B), as initial AT =~ perturbational
field, since the dispersion and the Kerr nonlinearity then bal- ro A

ance each other. Thus, as initial conditon we consider °°[ =TT .\”' )

A(x,z=0)=A, secliax), wherea is related toA, according to P A\

Eqg.(16), andd(x,z=0)=0. Using these in the right-hand side . 0BF - ) '\\ i
of Eq. (21), the initial evolution of# is obtained, and this = / S\
solution can then be used to find the lowest order modifica- / .

tions of A from Eqg. (20). 0.4r / Y ]
However, as found using variational analysis, the pulse ,." ' '

evolution is, due to the effects of the nonlocal term, most b N

conveniently described in an accelerated coordinate system / :

The proper value of the acceleration can be taken from the d B

preceding section, but it is also instructive to derive it using 0
an analogy with Ehrenfest's theorem in quantum mechanics.
It is straightforward to show that the motion of the mean

analysis and numerical simulations, respectively.

d*(x)
[T 2a(F), (22 the side,” and that the perturbation profile is in good agree-
L i _ ment with the numerical result, although its peak value is
where the averaging is defined according to slightly too large.
f| 4 2dx V. WAVE BREAKING
(f=— : (23 The nonlocal potential term, proportional toin Eq. (15),
f |42dx gives rise to a force (x)=—u|#{2. This implies that the cen-
o0 tral parts of the bunch are affected by a stronger force than

o . . ... the wings, and will accelerate/decelerate more. In fact, this is
3\23/ t?se ifgéﬁiéil_t;agr{:;x' d-lc—ar;i?/ :gcﬁggzu?ﬁeok\)/frlir;zg;]glth;;-t.he basic mechanism. behind the steepening and the deforma-
proach. Thusy,=y and the new coordinateis defined ac- tion of th_e bunch. It. is clear'that after a certain distance of
cordind o qu&g;y The amplitude and phase are then c)b_propagatlon, the hlgh-am_plltude parts should overtake/be
tained as e overtaken by the low-amplitude parts of the bunch. However,
the finite dispersion will prohibit the development of an in-
_ / 2 1 finite amplitude gradient, and the “overtaking” between dif-
A= Ao sechiasgvl + 4aa,uAOtan}‘(as)[secH(as) 3]22’ ferent parts of the bunch instead leads to the appearance of
(24 oscillations on the amplitude at the base of the steepening
side of the bunch.
; {KA(Z) 2 } It is appropriate at this point to emphasize that this wave-
==\— z.
2

y72
+ ?[tanlﬂ(as) +1] (25  preaking phenomenon does not involve a true shock forma-
tion with infinite gradients as is the case of wave breaking of

The first part of the phase, E(5), does not depend o)  plasma waves. Instead, this feature is analogous to the wave

and is identical to the phase of the fundamental soliton. Théreaking in nonlinear defocusing Kerr medfag,19, with

second part is tanh shaped, which is due to the form of théhe difference that in the latter case, the corresponding force

nonlocal potential term. As expected from the potential pic-is an odd function, which implies that the wave remains sta-

ture, it is found that the amplitude becomes asymmetric. tionary and that the wave-breaking phenomenon occurs sym-
Due to the limited accuracy, the perturbation analysis cametrically on both sides of the pulse.

only be applied within a certain propagation distance, ob- In order to estimate the characteristic length scale of the

tained from Eq(24) as wave-breaking phenomenon, the perturbation result for the
- amplitude, Eq(24), can be used. Thus, the order of magni-
AaauPiZ? <10 z< 1N |4aauAd). (26)  tude of the wave-breaking distancg,, is estimated as the

Usi : . _tshortest propagation distance for which the amplitude has a
sing the same numerlcal' parameters as a.bo.ve, no signitly . This is easily shown to occur at

cant changes in the amplitude are seen within that range.

However, as seen in E(R6), the application range decreases 3

slowly asu increases. Thus, a large valye=10, has been Zyp = m- (27)
used in Fig. 4, where the perturbation analysis is compared -

with the numerically obtained result after a propagation disdt is interesting to note that this approach gives the same
tanceL=0.2. It is seen that the pulse is starting to “lean toresult as the one used in R¢L9], which was based on the
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0.8 2 s
ad—A+A—ﬂ+KA3+,u,Af A’ds' =0. (30
0.7 ds? a .
0.6 This normalization set€;=1, and the physical significance
of this can be found by letting.— O (implying also thaty
05 —0). The fundamental soliton is then recovered from Eq.
(29), and the phase is given bg§,z. Thus, settingC,;=1
WF 04 corresponds to normalizing with respect to the propagation
constant.
03 Assume that a pulse-shaped stationary solution exists.
0.2 This implies thatA—0 ass— -, and asymptotically the
field should satisfy the equation
0.1
; d’A ysA
0 ' ' ' . “42 A2 0 0

0 20 40 60 80 100

which can be solved in terms of the Airy functions(iand
FIG. 5. The wave-breaking distance as predicted by analysis anBi(x), as
numerical simulations, respectively.

-2 -2
local velocity shear in the pulse created by the nonlinearly A=D, Ai(?——zo{) +D, Bi(?f—#a). (32
induced chirp, provided the latter is generalized to include V20?7 V2079

the mean acceleration of the pulse. In order to obtain lution containin finite number of
By increasing the propagation distance in Fig. 4, oscilla- order fo obtain a solution containing a € number o

tions on the amplitude will start to occur at the base of theparticles,_ itis necessary that<0 and thal_DZ:O. For pulse-_
pulse on the steepening side, i.e., closexto-3. Numeri- like solutions, the amplitude of the solution must also vanish

cally we define the wave-breaking distance as the propag&SS— > and the corresponding asymptotic equation is

tion distance where the amplitude acquires a second maxi- PA A
mum. In Fig. 5, the analytical prediction for the wave- a—+(l+,U,VV)A—£=O. (33)
breaking distance is compared with the result of the ds? 2a

numerical computations. The results show very good agree- . i _
ment, although the numerical results tend to be somewhddere, W is the total number of particles, which has been
larger than predicted. However, since only an order-of.2ssumed to be finite, and the corresponding solution is
magnitude estimate has been made, the result is quite satis-
factory. In particular, the analytic result predicts very well A=D Ai(w>

3

how the wave-breaking distance scales with {2029
VI. STATIONARY SOLUTIONS (34)
. . {521 + uW)a
As already discussed, the purely reactive case, corre- +Dy Bl — =5
sponding tox=0, allows a soliton solution, Eq16), con- 2%y

ince the acceleration has already been chosen to be nega-

taining a finite number of particles. In order to investigate
aﬁve, this implies that the asymptotic solution will be the sum

whether similar stationary solutions exist also in the gener
case, we return to Eq$20) and (21), which describe the U . X
evolution of the(real) amplitude and the phase of the wave, of two oscillating Airy functions as— o. However, the total

respectively. Based on our previous results, we will look for"umPer of particles of such a solution is infinite, and a con-
solutions that are stationary in an accelerated frame of refeffadiction has been reached. Thus, we conclude that there are

ence, i.e., we introduce=x—- yz2/2, where the acceleration ~ N0 Stationary solutions to E¢l4) containing a finite number
now is unknown and has the character of an eigenvaluef particles. _ N _
Stationarity implies that the amplitude depends only on the On the other hand, if the conditiocA—0 ass—< is
coordinates, i.e., A=A(s). The phase variation can then be relaxed, steplike solutions can be found. By assuming in Eq.

found explicitly, and the system becomes (30) that A— A, whens— oo, the integral term is asymptoti-
cally equal touA3s. This term can cancel the term that gives
6= 6o+ Cyz- ¥zs_ 72_23 (28)  fise to the Airy solutions, provided that
20 12«
Y
2 s A, = P (35)
ad—A +CA- A, kA3 + MAf AZds =0, (29) 2ap

ds? 2a o

A solution of this type has been calculated numerically by
whereC; is a constant, which acts as a second eigenvaluausing a=-1, k=-1, y=-1, andu=1, and by choosing the
However, by rescalingy, y, k, and u, the equation can be amplitude for the asymptotic solution for negatise The
rewritten as result has been plotted in Fig. 6, and it is seen that the pre-
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FIG. 6. A numerically obtained steplike solution.

dicted value for the asymptotic amplitudm:l/v’i, is cor-
rect.

VIl. CONCLUSIONS AND REMARKS

PHYSICAL REVIEW E 69, 066501(2004)

to both an acceleration and a deformation of the particle
bunch. These effects have been analyzed analytically using
both a variational analysis and a direct perturbation analysis
of the initial dynamics, and the results have been shown to
be in good agreement with numerical simulations. It has also
been shown that for impedances with a large resistive part,
the deformation leads to self-steepening and eventually a
wave-breaking phenomenon. The scale length for this effect
has been estimated and has also been shown to be in good
agreement with numerical results. Finally, it has been shown
that no stationary pulselike solutions with a finite number of
particles exist for the generalized NLS equation, but semi-
infinite shock solutions are possible.

The results cannot be extrapolated to arbitrarily high am-
plitudes, since very steep gradients are predicted in that case
and a more general equation, e.g., the full B2}, must be
used. It should, however, be noted that the asymmetric self-
steepening does not lead to true shock formation in the sense
of infinite derivatives. Instead, the steepening effect is bal-
anced by the dispersive effects included in the model. We
also emphasize that the wave-breaking phenomenon is not
the analog of the wave breaking of plasma waves, where
very steep gradients appear unless dispersion is included.
Instead “wave breaking” refers to an optical phenomenon
where the pulse steepens and starts to oscillate at its low

In conclusion, a generalized NLSE, describing the nonlinintensity wings without any singular behavior. The maximum
ear longitudinal dynamics of high-energy charged particleattainable slope is determined by the strength of the nonlin-
beams in accelerators within the TWM approach, has beesarity and consequently there is a maximum amplitude of the
analyzed using both analytical and numerical methods. It hagulse at which the model breaks down. In a future work, the
been discussed in qualitative physical terms how the inclueharged-particle beam dynamics will be investigated by tak-
sion of the resistive part of the coupling impedance gives riséng into account the full Eg(2).
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